Scaling
Software Agility

Best Practices for Large Enterprises

Dean Leffingwell

d by Philippe Kruchten

Leffingwell, LLC.

Whitepaper

A Lean and Scalable Requirements Information
Model for the Agile Enterprise

By Dean Leffingwell
with Juha-Markus Aalto

Abstract:

In this whitepaper, we describe a Lean and Scalable Requirements Information Model that extends the
basic team-based agile requirements practices to the needs of the largest, lean-thinking software
enterprise. While fully scalable to all levels of the project, program and portfolio levels, the foundation

of the model is a quintessentially lean and agile subset in support of the agile project teams that write
and test all the code.

1 | ALean and Scalable Requirements Information Model for the Agile Enterprise
Copyright 2009, Leffingwell, LLC.

Contents

INEFOTUCTION .ttt e st e e bt e e s bt e e s baeesabe e e e ambeeaabbeesbbeeeanbeesanseeesnreeanns 3
The Big Picture of ENterpris@ ALYcocciiiiiiiieee ettt e e e e e e e e et ra e e e e e e e e e e eeeannnens 3
The Requirements Model fOr AGIlE TEAMISuuuiiiiiii ettt e e e e e e e e e s e ebr b rreeeeaaeeeeeas 4
Stories and the [teration BackIOguuiiiiiiiiiii e e e e e e e e e neees 5
L8) (o] 1T P PP PPN 5
Stories are IMplemented Via TASKS ...ttt e e e e e e e e e e et rreeaaaaeeeean 6
Acceptance Tests: All Code is TEStEA COUR....uiiiiiiiiiiiiiiiiiiie ettt e e e e 7
Summary of the Model for Agile TEAMSttt e e e e e e e e e e e e e e e enanenns 7
Why the Team Model is Lean and Scalable ... 8
The Model for AgIle PrOgramS. i ittt ee ettt e e e e e e e e e e ee bt ra e e e e e aaaeesse s snbtssasaaeaaaeeeeesnsnsenns 8
F AU oo e e e e e e 9
The Feature (Release) BaCKIOEueiiuiiiiiiieiiiie ettt ettt s e s 10
Expressing Features in Story Canonical FOrM ..o iiiie ettt e e 10
LG] = =T LU TP PPPPTPP 10
On System Qualities and Non-functional RequUiremMents..........ccccciiiiiiiiie e 11
Testing Non-Functional REQUIFEMENTS..........uuiiiiiieii it e e e e e e e e e e s e rarreeeaaaeeeeenas 12
Why the Program Model is Lean and Scalablec..uuiiiiiiiiii i 12
The Model for the Agile Portfolio: Strategic Product Themes and EPICSuuvvveeeeeeeeiiiciiiiiiieeeeeeeeeee, 13
StrategiC ProdUCT THEMIES ...uviiiiiieeee et e e e e e e et e e e e e e e e e e s s aabbbaaaeeeaaaaeeeeans 13
Why Investment Mix Rather than Backlog Priority?ccccueeeiieiii i 14

=1 oY Lok PP PPPPPRT 15
Discriminating Epics, FEatures and STOMES......uuuiiiii it ee e e e e ettt e e e e e e e e e e s rraereeaaeeeeeas 16
OK, it’s Even Bigger Now, Is it Still Lean and Scalable?ocoiiiiieiii e 17
Summary — The Full Lean and Scalable Requirements Model.........ccccceeeeeieiiiiiiiiiiieee e, 18
ADOUL the AUTROIS ...ttt e st e st e e s bt e e sbb e e sbteeesabeesbeeesneeenans 18

2 | A Lean and Scalable Requirements Information Model for the Agile Enterprise
Copyright 2009, Leffingwell, LLC.

Introduction

Agile development practices introduced, adopted and extended the XP-originated “User Story” as the
primary currency for expressing application requirements within the agile enterprise. The just-in-time
application of the user story simplified software development and eliminated the prior waterfall like
practices of overly burdensome and overly constraining requirements specifications for agile teams.

However, as powerful as this innovative concept is, the user story by itself does not provide an
adequate, nor sufficiently lean, construct for reasoning about investment, system-level requirements
and acceptance testing across the larger software enterprises project team, program and portfolio
organizational levels. In this whitepaper, we describe a Lean and Scalable Agile Enterprise Requirements
Information Model that scales to the full needs of the largest software enterprise, while still providing a
guintessentially lean and agile subset for the agile project teams that do most of the work.

The Big Picture of Enterprise Agility

In my Big Picture blog series’, I've attempted to capture the essence of enterprise agility in a single
graphic, so as to better communicate the gestalt of “what this will all look like” after an agile
implementation. As this serves as the larger organizational, process and requirements artifact context

! http://scalingsoftwareagility.wordpress.com/category/the-big-picture/

3 | A Lean and Scalable Requirements Information Model for the Agile Enterprise
Copyright 2009, Leffingwell, LLC.

for the requirements information model, Figure 1 below is an illustration of the Big Picture.

The Agile Enterprise Big Picture
For discussion, see www.scalingsoftwareagilitv.wordpress.com
(-
Portfolio 8 Epic Epics span
} Gicinn = releases a
Uptiie | e =
2L g
?c: wp JArchitectural; [JEpICES) Architecture &
a1 | . evolves
3 ﬂ inunway, | JEpTCA continuously
i
Roadmap X P Systems, applications, products ©2009 Le,f%’/ngwell; LLC.
s Vison ; Plannin; = —
&l [V]----2T0T L — — 4 —4
- 1 Release theme and objectives & @
® System Team | i i i 1 = 1 i & 3
= = 7 Featurel | | e Feature3 | el i
;3 T4 ppi T 01 8] e &) i &
S5 =t ‘ S1£1 2 1% Features 92
25 MM i f g L fitin a
&5 82 | { ! | 8, 21 releases
3 vor 23 I R A0 P i
£ Contirants & @ | Feature2 | g1 Featured | g1
Release Mgt Team (NFRs) _.+ i i | S i z!
: : ; . :
00 Components and Features Y v
£l stori m Stories fitin
gz:::t §E [Teibes ne‘ral.hons
] S\
-~ " > <] / ¥ %
Agile ST cHE o E
“ Master ; Iéé a’%g g E & E E E é \ (Iimplemented by)
L] =Lt — Tasks k]
Agile Teams L] ;- 2
. -~ i-4 Stories E
-
£z = Spikesare
2 5 o = B research,
: “ £3 H=3 : : = 8 design,
a apEe !] : : .= =LY refactor
Inspired by collaboration NFRs . A Stories
Leffingwell, LLC. & Symbian Software Ltd Iterations Iterations

Figure 1 - The Big Picture of Enterprise Agility

While the details of this picture are outside the scope of this whitepaper, relevant highlights include:

* Development of large scale systems is accomplished via multiple teams in a synchronized "Agile
Release Train"—a standard cadence of time-boxed iterations and releases.

* Releases are frequent, typically at 60-120 day maximum boundaries.

* There is a separation of product definition responsibilities at the project, program and portfolio
levels.

* Different requirements artifacts - Stories, Features, and Epics - are used to describe the system
at these different levels.

The Requirements Model for Agile Teams
Of course, since the Agile Teams develop and test all the code, they play the most critical role within the

I”

agile enterprise. In the Big Picture, they are depicted at the “project level” as indicated below.

4 | A Lean and Scalable Requirements Information Model for the Agile Enterprise
Copyright 2009, Leffingwell, LLC.

v
m Stories fitin

iterations

L=

7
Components and Features
Stories

Iteration
(Story) Backlog

Y
Product
Owner
e Agile
“ Master
[]

I
i
i
gEEEEEENEEEEN
N=1 mplemented by)
@ i Tasks o]
Agile Teams L] [@
{3-10 typical) C) i-4 ' Stories o
3) a
§S = Spikes are
i iz = : : : research,
[=3 EEE - : R : design,
& I =] 1 refactor
Inspired by collaboratio NFR: R A ¢
;ﬁhgw ll LLC. & 5-‘,:1 cqsﬂ Software Ltd ’ Iterations Iterations Stories

Figure 2 - The Agile Team in the Enterprise

Stories and the Iteration Backlog

Since the efficiency of these teams is paramount, we need to assure they apply the simplest and leanest
possible requirements model. In agile, that typically takes the form of the simple story, each of which is
contained in a prioritized backlog, as figure 3 illustrates.

Backlog Item

Is a kind of

Figure 3 - A Story is a kind of backlog item

First, we note that Story is a “kind of” Backlog Item. (As we will see, this also implies that there are other
kinds of backlog items as well.) In the Big Picture, we described this particular backlog as the Iteration
(Story) Backlog as can be seen below.

Product
Owner

Agile
Master

Iteration
(Story) Backlog

Agile Teams

L 2L N J
ok]

Iteration
(Story) Backlog

Figure 4-Stories and the Iteration Backlog

The team’s Iteration (Story) Backlog consists of all the work items the team has identified. In the
requirement model, we call these work items Stories because that’s what most agile teams call them.
(Strictly speaking, “work items” is probably a better term, but we aren’t trying to fight agile gravity with
this meta-model!) So a Story is a work item contained in the team’s iteration backlog.

User Stories

5 | A Lean and Scalable Requirements Information Model for the Agile Enterprise
Copyright 2009, Leffingwell, LLC.

While that definition is simple, it belies the underlying strength of agile in that it is the User Story that
delivers the value to the user in the agile model. Indeed, the user story is inseparable from agile’s goal of
insane focus on value delivery, and it is the replacement for what has been traditionally expressed as
software requirements. Originally developed within the constructs of Extreme Programming, User
Stories are now endemic to agile development in general and are taught in Scrum as well as XP.

A User Story is a brief statement of intent which describes something the system needs to do for the
user. As commonly taught, the user story often takes a canonical (standard) form of:

As a <role> I can <activity> so that <business value>

LOTS have been written on applying User Stories in agile development so there is no need to elaborate
further here. However, in the model so far, the User Story is not explicitly called out, but rather is
implied by the Story class. To make the User Story explicit, we need to extend the simple model a little
as seen below:

Other Work Item

Figure 5-Stories can be user stories or other work items

With this small addition, we now see that the backlog is composed of User Stories and Other Work
Iltems, which include things like refactors, defects, support, research spikes and infrastructure
development.

Stories are Implemented via Tasks

While, on the surface, agile development may appear to be less disciplined than traditional iterative or
waterfall development, in reality, nothing could be further from the truth. Agile is the most disciplined
software development model in use today. Part of that discipline is assuring that stories can be
developed, tested and delivered to the baseline in the course of short iteration. Assuring that requires
daily and intense cooperation from teammates. Therefore, each team member estimates the Tasks that
are necessary to achieve a story. Since Tasks are explicit in agile, they must be explicit in our model as
well:

Implemented by

Figure 6-Stories are implemented via tasks

As implied by the 1-to-many (1..*) relationship expressed in the model, there is often more than one
task necessary to deliver even a small story.

6 | A Lean and Scalable Requirements Information Model for the Agile Enterprise
Copyright 2009, Leffingwell, LLC.

Acceptance Tests: All Code is Tested Code

Ron Jeffries, one of the creators of XP, used the neat alliteration, Card, Conversation and Confirmation
to describe the three elements of a User Story.

* Card represents the 2-3 sentences used to describe the intent of the story.

* Conversation represents fleshing out the details of the intent of the card in a conversation with
the customer or product owner.

* Confirmation represents the Acceptance tests which will confirm the story has been
implemented correctly.

With this simple alliteration and XPs zealousness for “all code is tested code” we have an object lesson
in how quality is achieved during, rather than after, actual code development. In our model, however,
we treat the Acceptance Test an artifact distinct from the (User) Story itself, and associate each story
with one or more acceptance tests as indicated below:

Acceptance Test

Figure 7- A story is not done until it passes an acceptance test

In so doing, the model is explicit on its insistence on the relationship between the Story and Acceptance
Test, thereby assuring quality. This is seen in the 1 to many (1..) relationship (i.e. every story has one or
more Acceptance Tests) and in the fact that a Story cannot be considered complete (done when passes)
until it has passed the Acceptance Test(s).

Summary of the Model for Agile Teams

Perhaps this didn’t seem like an overly complex discussion, and for most agile teams, these few
unarguably-agile artifact types are all that is needed for a lightweight agile process. And yet, the
apparent simplicity disguises a somewhat more complex background, as the summary model shows:

Backlog Item

Is a kind of

1 1..*
0 > Task
Implemented by

Done when passes

Acceptance Test

7 | A Lean and Scalable Requirements Information Model for the Agile Enterprise
Copyright 2009, Leffingwell, LLC.

Relative to the “advertising claims” of our lean and scalable model, it’s worth noting why the model is
lean and scalable:

It is Lean It is Scalable

Simplest possible agile artifact types No limit to the number of teams
Just-in-time story development eliminates No limit to the number of stories
requirements specification and inventory

All code is tested code — no untested code If all code is tested code, the system
inventory either will have inherent quality too
Simple backlog construct facilitates a pull/kanban Separation of backlogs simplifies
system administration and tooling

The Model for Agile Programs
For smaller software projects and small numbers of teams, this model is fully adequate to support
guality development in an agile manner. Indeed, the model and artifacts so far are so simple and

III

commonly used that one would not consider it to be a “requirements model” at all.

However, at enterprise scale, things are more complex and this simplistic model does not scale well to
the enterprise challenge. The reason is fairly simple, as nifty as the story construct is, it is too fine
grained a construct for the enterprise to reason with when communicating vision, planning or assessing

status. One problem is in the math. Let’s assume:

* A modest sized enterprise (or system or application within a larger enterprise) that requires
say, 200 practitioners, or 25 teams to deliver a product to the market.

* The enterprise delivers software to the market every 90 days in five, two week iterations (plus
one hardening iteration).

* Each team averages 15 stories per iteration

* Number of stories that must be elaborated and delivered to achieve the release objective=
25*5*15=1,875!

How is an enterprise supposed to reason about such a process?

What is this new product going to actually do for our users?
If we know we have 900 stories complete, we may be about 50% done, but what do we actually
have working? How would we describe 900 working things?

3. How will we go about planning a release than contains 1,875 things?

A second problem is in the language of the User Story. Even if | know 100 things that “as a <role> I can
<activity> so that <business value>”, can do, what Features does the system offer to its user and

what benefits does it provide?

So for many enterprises, the simpler team model does not scale to the program level set of challenges,
and a new model must be applied:

A Lean and Scalable Requirements Information Model for the Agile Enterprise
Copyright 2009, Leffingwell, LLC.

RO ;_’, —— Systems, applications, products
€ |) Planning = —~
- s 1 Release theme and objectives & (7
@ System Team | I I i 1 5 { ! | & £
AZ“ = = ¥ 7 Featurel | @r~7 | Feature3 | § .: e
" L4 1 | H K 1 { | | Y]
33 I _\u =t o 1 B < #| Features £
20 MM :EE | o |51 | Jein &
~ s 1 | | | ol a g releases
S Backlog =3 ! ! . ! y ! ol
uw . - 1 @ 2
= Constraints @a |é Feature 2 g Feature 4 S|
Release Mgt Team (NFRs) 4 3 i
i i
- 0 1

Figure 9-The model for agile programs

In this model, the level of abstraction of defining system behavior is elevated to the system/feature
level, and the level of planning and management is elevated to the release.

Feature

By using the word Feature for this higher level abstraction, we have the security of returning to a more
traditional description of system behavior, as Feature is a traditional artifact that has been well
described in a number of software requirements texts’. Generally, Features are services provided by the
system that fulfill a user need. They live at a level above software requirements and bridge the gap from
the problem domain (understanding user needs) to the solution domain (specific requirements intended
to address the user needs) as the graphic from that text below shows:

Features

Softwere recurements

Figure 2-1 Overview of the problem domain and the solution doman
Figure 10-Traditional "requirements pyramid"

We also posited in that text that a system of arbitrary complexity can be described with a list of 25-50
such features. That simple rule of thumb allowed us to keep our high level descriptions exactly that,
high level, and simplified our attempts to describe complex systems in a shorter form.

Of course, in so doing we didn’t invent either the word “Feature” or the usage of the word. Rather, we
simply fell back on industry standard norms to describe products in terms of, for example, a Features
and Benefits Matrix as was often used by product marketing to describe the capabilities and benefits
provided by a new system. Moreover, by applying this familiar construct in agile, we also bridge the
language gap from the agile project team/product owner to the system/program/product manager level
and give those who operate outside our agile teams a traditional label (Feature) to use to do their
traditional work (i.e. describe the thing they’d like us to build).

2 Managing Software Requirements: A Use Case Approach. Leffingwell and Widrig. Addison Wesley, 2003.

9 | A Lean and Scalable Requirements Information Model for the Agile Enterprise
Copyright 2009, Leffingwell, LLC.

Also, the ability to describe a system in terms of its proposed features and the ability to organize agile
teams around the features gives us a straightforward method to approach building large-scale systems

in an agile manner.

The Feature (Release) Backlog

Returning to the model, we model Features as release level Backlog Items:

Backlog Item

Is a kind of

Feature -
Realized by

Figure 11-Features are another kind of backlog item

At release planning time, Features are decomposed into Stories, which is the team’s implementation
currency. Planned Features are stored in a Backlog, in this case the Feature (Release) Backlog.

In backlog form, Features are typically expressed in bullet form, or at most, in a sentence or two. For
example, you might describe a few features of Google Mail something like:

e Provide “Stars” for special conversations or messages, as a visual reminder that you need to
follow-up on a message or conversation later.
¢ Introduce “Labels” as a “folder-like” conversation-organizing metaphor.

Expressing Features in Story Canonical Form

As agilists, however, we are also comfortable with the suggested, canonical Story form described earlier:
as a <role> | can <activity> so that <business value>. Applying this form to the Feature construct can
help focus the Feature writer on a better understanding of the user role and need. For example:

As a modestly skilled user, I can assign more than one label to a conversation so that 1
can find or see a conversation from multiple perspectives

Clearly there are advantages to this approach. However, there is also the potential confusion from the
fact that Features then look exactly like Stories but are simply written at a higher level of abstraction.
But of course, that’s what they really are!

Testing Features

In the team model, we also introduced the agile mantra all code is tested code and attached an
Acceptance Test to each Story to enforce that discipline. At the Program level, the question arises as to
whether or not Features also deserve (or require) Acceptance Tests. The answer is, most typically, yes.
While Story level testing should assure that the methods and classes are reliable (unit testing) and the

10 | A Lean and Scalable Requirements Information Model for the Agile Enterprise
Copyright 2009, Leffingwell, LLC.

Stories suits their intended purpose (functional testing), the fact is that a Feature may span multiple
project teams and many, many (hundreds) of Stories.

While perhaps ideally, each project team would have the ability to test all Features at the system level,
the fact is that that is often not practical (or perhaps even desirable - after all, in the absence of 100%
automation, how many teams would we want to continuously test the same feature!). Also, many
individual project teams may not have the local resources (test bed, hardware configuration items, other
applications) necessary to test a full system. In addition, there are also a myriad of system-level “what

if” considerations (think alternate use-case scenarios) that must be tested to assure the overall system
reliability; many of these can only be tested at the full system level.

For this reason, Features typically also require one or more functional acceptance tests to assure that
the Feature meets the user’s needs. To reflect the addition of Acceptance Tests to Features, it is
necessary to update the information model with an association from Feature to Acceptance Test as the
graphic below shows.

Backlog Item

Is a kind of

Feature

Realized by
1 1

Done when

passes
1.
Acceptance Test

Figure 12-Features have acceptance tests too

In this manner, we illustrate that every Feature requires one or more Acceptance Tests, and a Feature
also cannot be considered done until it passes its test.

On System Qualities and Non-functional Requirements

From a requirements perspective, the User Story form and Feature expressions are used to describe the
functional requirements of the system; those system behaviors whereby some combination of inputs
produces a meaningful output (result) for the user.

With all due respect to that nifty agile invention, however, little has been described in agile as to how to
handle the Non-functional Requirements (NFRs) for the system. Traditionally, these were often
described as the “ilities” — quality, reliability, scalability, etc. — and served to remind us that these are
important and critical elements of system behavior. For if a system isn’t reliable (crashes) or marketable
(failure to meet some imposed regulatory standard) or scalable (doesn’t support the number of users
required) then, agile or not, we will fail just as badly as if we forgot some critical functional requirement.

In one perspective, all of these items can be considered to be constraints on new development, in that
each eliminates some degree of design freedom on the part of those building the system. For example:

11 | A Lean and Scalable Requirements Information Model for the Agile Enterprise
Copyright 2009, Leffingwell, LLC.

“every product in the suite has to be internationalized (constraint), but only the Order Entry module
must be localized to Korean (Feature) for this release.”

So in the information model, we have modeled them as such:

0.* (W Non-functional
Backlog Item > .
Requirement

Constrained by

Figure 13-Backlog items are constrained by Nonfunctional Requirements

We see that a) some Backlog Items may be constrained by zero or more Nonfunctional Requirements
(0...*) and b) Nonfunctional Requirements apply to zero or more backlog items (0..*).

Testing Non-Functional Requirements

When we look at the long list of list of potential Backlog Constraints — (SCRUPLED: Security, Copyright,
Reliability, Usability, Performance, Localization, Essential standards and Design Constraints) - the
guestion naturally arises as to whether these constraints are testable. The answer is mostly yes, as most
of these constraints must be objectively tested to assure system quality, as illustrated below:

Non-functional
Requirement

Compliant
when passes

System

Validation
Test

Figure 14-A system is compliant when it passes System Validation Tests

Rather than calling these tests Acceptance Tests and further overloading that term, we’ve called them
System Validation Tests. This is intended to better describe how this set of tests help assure that the
system is validated to be in compliance with its Nonfunctional Requirements. The multiplicity (1..* and
0..*) further indicates that not every NFR has a validation test. However most do (..*) and every system
validation test should be associated with some NFR (1..*), otherwise there would be no way to tell
whether it passes!

Why the Program Model is Lean and Scalable
Of course, as we scale our model up to the program level, we must constantly check that we are still
driving lean, agile and scalable behavior. But indeed we are:

It is Still Lean It is Quite Scalable

Teams apply only the project level story Features are implemented by stories, and
abstractions can be traced with tooling

Features provide a higher level abstraction Higher abstraction simplifies reasoning and
for program management assessment for large programs

12 | A Lean and Scalable Requirements Information Model for the Agile Enterprise
Copyright 2009, Leffingwell, LLC.

Just-in-time feature elaboration eliminates One Feature backlog can drive Stories for

too early requirement specification many teams

inventory

Feature backlog construct facilitates system Separation of backlogs simplifies
level pull/kanban system administration and tooling

The Model for the Agile Portfolio: Strategic Product Themes and Epics

For many software enterprises, including those of modest scope of a few hundred practitioners, the
Project Model (primarily Stories, Tasks, and Acceptance Tests) plus the Program Model, (adding Features
and Non-Functional requirements) is all that is needed. In these cases, driving the releases with a
Feature-based vision and driving iterations with stories that are created by the teams, is as scalable as is

required.

However, there is another class of enterprises—enterprises employing many hundreds to thousands of
practitioners—wherein the governance and management model for new software asset development
needs additional artifacts, and still higher levels of abstraction. In the Big Picture, this is illustrated as the

Portfolio level as indicated below:

Dortfolio ‘ ‘ EpiCL Epics span
y . releases o
O DICZ o=
vision iz EpICZ g
c Architect S
S vr— T [Epici3 rchitecture g

L evolves
RUnway, | JEpICH continuously

Figure 15-Portfolio level of the Big Picture

This level introduces two new, additional artifact types Epics and Strategic Product Themes.

Strategic Product Themes

Strategic Product Themes (also called “Investment Themes” or “Themes” for short) represent the set of
initiatives which drive the enterprises investment in systems, products and applications. The set of
Themes for an enterprise, or business unit within an enterprise, establishes the relative investment
objectives for the entity as the pie chart below illustrates:

13 | A Lean and Scalable Requirements Information Model for the Agile Enterprise
Copyright 2009, Leffingwell, LLC.

1H 2009 Investment Priorities

Theme 4 _
9%

Theme 3 _/
10%

Figure 16-Strategic Product Themes portfolio mix

These Themes drive the Vision for all product teams and new Epics are derived from this decision. The
derivation of these decisions is the responsibility of those who have fiduciary responsibilities to their
stakeholders. In most larger enterprises, this happens at the business unit level based on annual or twice
annual budgeting process.

Within the business unit, the decisions are based on some combination of:

1. Investment in existing product offerings — enhancements, support and maintenance

2. Investment in new products and services - products that will enhance revenue and/or gain
new market share in the current or near term budget period

3. Investment in futures - product and service offerings that require investment today, but will
not contribute to revenue until outlying years.

The result of the decision process is a set of Themes - key product value propositions that provide
marketplace differentiation and competitive advantage. Themes have a much longer life span than
Epics, and a set of Themes may be largely unchanged for up a year or more.

Why Investment Mix Rather than Backlog Priority?
As opposed to Epics, Features and Stories, Investment Themes are not contained or represented in a
Backlog (they are not “a kind of Backlog Item”) as the model shows.

Backlog Item

Is a kind of

Strategic
Product
Theme

Feature

Realized by Realized by Realized by

Figure 17-Portoflio Model adds Epics and Strategic Product Theme

14 | A Lean and Scalable Requirements Information Model for the Agile Enterprise
Copyright 2009, Leffingwell, LLC.

Backlog Items are designed to be addressed in priority order. Strategic Product Themes are designed to
be addressed on “a percentage of time to be made available basis.” For example, the lowest priority
Story on an iteration backlog may not be addressed at all in the course of an iteration and yet the
iteration could well be a success (meet its stated objectives and be accepted by the product owner).
However, if the lowest priority (smallest investment mix) Strategic Product Theme is not addressed over
time, the enterprise may ultimately fail in its mission as it is not making its actual investments based on
the longer term priorities it has decided.

Strategic Product Themes also do not share certain other Backlog Item behaviors. For example, as
critical as they are, they are not generally testable, as their instantiation occurs first through Epics and
then finally, via actual implementation in Features and Stories, which have the specificity necessary to
be testable.

Epics

Epic, then, represent the highest level expression of a customer need as this hierarchical graphic shows.

Epics

1 I “ m Features

m Cﬂ:l:[ﬂ] m EIIIIUI Stories
1 L
DD MiD MID Do Tasks

Figure 18-Epics are the highest level requirements artifact

Derived from the portfolio of Strategic Product Themes, Epics are development initiatives that are
intended to deliver the value of the theme and are identified, prioritized, estimated and maintained in
the Epic Backlog. Prior to release planning, Epics are decomposed into specific Features, which in turn,
drive Release Planning® in the Big Picture.

® http://scalingsoftwareagility.wordpress.com/category/release-planning/

15 | A Lean and Scalable Requirements Information Model for the Agile Enterprise
Copyright 2009, Leffingwell, LLC.

{EVESUTENTY
1l _‘4 r—~ "

s E0

Ynmalan

WEGSING Y

P LRV S0 '
& 5 System Team

i
1
1
1
1
1

o o |

g

Product =)
oS ‘m ®
Z o k? (5
23 S5
.\m T 8 A o
’ - « S - — & =
> % iz
o Backlog -0
Lo Constraints o

Release MgtTeU“ (NFRs)

Figure 19-Release Planning in the Big Picture

Epics may be expressed in bullet form, as a sentence or two, in video, prototype, or indeed in any form
of expression suitable to express the intent of the product initiative. With Epics, clearly, the objective is
Vision, not specificity. In other words, the Epic need only be described in detail sufficient to initiate a

further discussion about what types of Features an Epic implies.

Discriminating Epics, Features and Stories

It's apparent by now that Epics, Features and Stories are all forms of expressing user need and implied
benefit, but at different levels of abstraction. While there is no rigorous way to determine whether a
“thing you know you want to do” is an Epic, Feature or Story, the following table of discriminators

should help:
Type of L s Time frame & .
. Description Responsibility . Expression format Testable
Information Sizing
BIG, hairy, .
. Span strategic
audacious, game . .
. planning horizon,
. changing,
Strategic L . 12-18+ months.
initiatives. Portfolio . Any: text, prototype, PPT,
Product . o . Not sized, . .
Differentiating, fiduciaries video, conversation
Theme o controlled by
and providing
. percentage
competitive .
investment
advantage.
Program and Most any, including
Bold, Impactful,
. product 6-12 montbhs. prototype, mockup,
Epic marketable . . No
)] management, Sized. declarative form or user
differentiators .)
business owners story canonical form

16 | A Lean and Scalable Requirements Information Model for the Agile Enterprise
Copyright 2009, Leffingwell, LLC.

Short, descriptive,
value delivery and
benefit oriented Product

Fits in an internal
release, divide into Declarative form or user

incremental sub- story canonical form.
Feature statement. Manager and . Yes
features as May be elaborated with
Customer and Product Owner.
. necessary. system use cases.
marketing

Sized in points.
understandable.

Small atomic. Fit Fits in a single
for team and Product Owner iteration. .
Story . . . User story canonical form Yes
detailed user and Team. Sized in story
understanding points.

Table 1-Discriminating Themes, Epics, Feature and Stories

OK, the Model is Even Bigger Now, Is it Still Lean and Scalable?

We admit that the model appears to grow in complexity as it scales to the needs of the full enterprise.
However, we posit that this is an effect of the complexity of the challenge that the enterprise faces,
rather than the model itself, and failure to address this complexity with primary artifacts creates an
even more complex model and less lean approach. (Imagine reasoning about 5,000 flat requirements, or
20,000 stories!). So yes, it is still lean, and it is still scalable.

17 | A Lean and Scalable Requirements Information Model for the Agile Enterprise
Copyright 2009, Leffingwell, LLC.

It is Still Lean It is Scalable

Portfolio planners need only two, light- Portfolio focus on business case and

weight, high level abstractions. investment mix, rather than system
requirements

There are only a few investment themes at Lighter weight , higher level artifacts

any one time simplifies reasoning about large numbers of
programs

There are just a few epics of interest in play Epic-to-feature hierarchy assures

at the various program release boundaries investment follows strategic objectives

across the full enterprise

Summary - The Full Lean and Scalable Requirements Model

In summary, the full lean and scalable requirements model for the agile enterprise appears below.

0.* 0.* Non-functional
Requirement

Backlog Item
Constrained by

Compliant

Is a kind of when passes

System

Validation
Test

Strategic
Product
Theme

Feature

Realized by

Done when
passes

‘Y

Acceptance Test

Figure 20-Full enterprise requirements model

While this model may appear to be more complex that most agilists have typically applied to date, it
scales directly to the needs of the full enterprise without burdening the agile teams or adding
unnecessary administrative or governance overhead. In this manner, the enterprise can extend the
benefits of agility — from the project — to the system — to the portfolio level, and thereby achieve the
full productivity and quality benefits available to the increasingly agile enterprise.

About the Authors

Dean Leffingwell is an entrepreneur, executive, consultant and technical author who provides product
strategy and enterprise-scale agility coaching to large software enterprises. Mr. Leffingwell has served as
chief methodologist to Rally Software and formerly served as Vice President of Rational Software, now
IBM’s Rational Division, where he was responsible for the RUP. His latest book is Scaling Software

18 | A Lean and Scalable Requirements Information Model for the Agile Enterprise
Copyright 2009, Leffingwell, LLC.

Agility: Best Practices for Large Enterprises and he is the lead author of the text Managing Software
Requirements: First and Second Editions, both from Addison-Wesley. He can be reached through his blog
at http://www.scalingsoftwareagility.wordpress.com.

Juha-Markus Aalto is Director, Operational Development of the S60 SW unit of Nokia Devices where he
has been leading agile adoption. Mr. Aalto has worked for Nokia for twenty years in various
development, quality and leadership positions related to large scale software development. He is one of
the authors of the book Tried & True Object Development — Industry-proven Approaches with UML ,
Cambridge University Press / SIGS Books, 1999.

19 | A Lean and Scalable Requirements Information Model for the Agile Enterprise
Copyright 2009, Leffingwell, LLC.

