
Harnessing Innovation

Lightweight Governance Models for

High Performing Agile Teams

May 22, 2008

Dean Leffingwell

Copyright 2008 Dean Leffingwell

Approaching Challenge at Scale

“We place the highest value on actual implementation and

taking action.

There are many things one doesn’t understand; therefore, we

ask them, why don’t you just go ahead and take action?

You realize how little you know, and you face your own

failures and redo it again, and at the second trial you realize

another mistake . . . So you can redo it once again.

So by constant improvement one can rise to the higher level

of practice and knowledge.

This guidance reminds us that there is no problem too large

to be solved if we are only willing to take the first step.”

Fuijo Sho, President, Toyota

READY,

AIM

AND ….

Copyright 2007 Dean Leffingwell

READY

Copyright 2007 Dean Leffingwell

Are we getting the

productivity, quality and

morale that we all deserve?

Seven Agile Team

Practices That Scale

The Define/Build/Test Component Team

Mastering the Iteration

Two-level Planning and Tracking

Smaller, More frequent releases

Concurrent Testing

Continuous Integration

Regular Reflection and Adaptation

Copyright 2008 Dean Leffingwell

Copyright 2008 Dean Leffingwell

1. Define/Build/Test Component

Team

Management Challenge: Connect the Silos

Optimized for vertical

communication

Friction across the silos

Location via function

A
rc

h
it

e
c
tu

re

P
ro

d
u

c
t

M
g

t

D
e
v
e
lo

p
m

e
n

t

T
e
s
t

a
n

d
 Q

A
Political boundaries

between

functions

Before Agile: Typical Functional Silos

Conway‟s Law

Copyright 2008 Dean Leffingwell

“Organizations which design systems are

constrained to produce designs which are

copies of the communication structures of

these organizations.”
- Mel Conway (1968)

(rigid organizations that are not willing to re-

organize to generate an optimal design, can end up

producing a sub-standard design that merely

reflects the pre-existing organization.)

Define/Build/Test Team

Copyright 2008 Dean Leffingwell

Product Owner
• Assure team is pursuing a common vision
• Establish priorities to track business value
• Act as „the customer‟ for developer

questions
• Work with product management to plan

releases
• Accept user stories and iteration

Scrum Master
• Run team meetings, enforce scrum
• Remove impediments
• Attend integration scrum meetings
• Protect the team from outside influence

dmd
Team

Product Owner

Agile/Scrum Master

Team
• Create user stories from product backlog
• Commit to iteration plan
• Define/Build/Test/Deliver stories (fully accepted)

2. Mastering the Iteration

The iteration is the heartbeat of agility.

Each iteration is a “potentially shippable

increment” of software.

Master that, and most other things agile tend to

fall naturally into place.

Copyright 2008 Dean Leffingwell

Copyright 2008 Dean Leffingwell

Iteration Pattern

Fixed Time

(Iteration)

P
la

n

R
e

v
ie

w

Story Card C

 F
ix

e
d

 R
e

s
o

u
rc

e
s

Story Card A Story Card BRelease Backlog

Story Card A

Story Card B

Story Card C

Story Card D

Story Card E

Story Card F

Story Card ...

Develop

Define

Accept

Iteration backlog

Iteration Objective

3. Two-Level Planning and Tracking

Copyright 2008 Dean Leffingwell

Release Cycle

Iteration Cycle
Release Scope

And Boundaries

Release

Planning

Iteration

Planning

Develop

& Test

Review

&

Adapt

Release

Vision

Drives

Feedback -

Adjust

Plan Releases at the System Level
- Three to six months horizon

- Prioritized feature sets define content

Plan iterations at the

component level
- 2-4 iteration visibility

- Currency: user stories

Release Pattern

Prioritized

Release (feature)

Backlog

• Feature 1

• Feature 2

• Feature 3

• Feature 4

i i i i

Feature 1

Feature 2

Feature 3
R

e

v

i

e

w

P

l

a

n

Stories

Release timebox

Release theme and objectives

Copyright 2008 Dean Leffingwell

4. Smaller, More Frequent Releases

 Shorter release dates

 60-120 days

 Releases defined by

 Date, theme, planned

feature set, quality

 Scope is the variable

 Release date and

quality are fixed
Cycle Cycle Cycle Cycle Cycle Cycle

Release Time Frame(Rt)

Cycle Cycle Cycle

Release Time Frame(Rt)

BEFORE

AFTER

Copyright 2008 Dean Leffingwell

Fix the Dates - Float the Features

• Teams learn that dates MATTER

• Product owners learn that priorities MATTER

• Agile teams MEET their commitments

Copyright 2008 Dean Leffingwell

Internal

Release 1
Internal

Release 2

Internal

Release 3

5. Concurrent Testing

 All code is tested code. Teams get no credit

for delivering functionality that has been

coded, but not tested.

 Tests are written before, or concurrently with,

the code itself.

 Testing is a team effort. Testers and

developers all write tests.

 Test automation is the rule, not the exception.

Philosophy of Agile Testing

Copyright 2008 Dean Leffingwell

Concurrent

 Unit Testing

 Developer written

 Acceptance Testing

 Customer, product owner, tester written

 Component Testing

 Integrated BVT (build verification tests) at

component/module level

 System, Performance and Reliability Testing

 Systems tester and developer Written

 QA Involvement

Copyright 2008 Dean Leffingwell

On Test Automation

Automate Now.

• You have no choice

• Manual tests bottleneck velocity

• You can‟t ship what you can‟t test

Copyright 2008 Dean Leffingwell

6. Continuous Integration

 Continuous integration is neither new nor

invented by agile

 It has been applied as a best practice for at

least a decade

 However, continuous integration is

mandatory with agile

Copyright 2008 Dean Leffingwell

the teams ability to build continuously

is a critical bottleneck to delivered

velocity

Continuous Integration Success

 Team can build at least once a day

 Effort is inversely proportional to time between
builds!

 A broken build “stops” production and is
addressed immediately

 Successful builds

 Checks in all the latest source code

 Recompile every file from scratch

 Successfully execute all unit tests

 Link and deploy for execution

 Successfully execute automated Build Verification
Test

Martin Fowler Copyright 2008 Dean Leffingwell

Copyright 2007 Dean Leffingwell

It is managements

responsibility to steer the

ship.

AIM

AIM

Vision and Lean Requirements

Intentional Architecture

Collaborative, synchronized, multi-

level Release Planning

Copyright 2008 Dean Leffingwell

Lean Requirements at Scale

Vision+

Just-in-Time

Elaboration

Story 1

Story 2

Story 3

Copyright 2008 Dean Leffingwell

I1 I3I2 I4

Vision –

Management „s Responsibility

 Where are we headed?

 What problem does it solve?

 What features and benefits does it provide?

 For whom does it provide it

 What performance does it deliver?

 What platforms, standards,
applications, etc will it support?

Copyright 2008 Dean Leffingwell

Vision+ Records Common

Requirements

 Some requirements must be known by all teams
 Performance, reliability and security requirements

 Industry/Regulatory/Customer standards and imposed
specifications

 Internationalization, accessibility

 Corporate standards: copyright, logo,
graphics, legal

These must ALL be documented online and be
continuously available to all affected component
teams.

Copyright 2008 Dean Leffingwell

Common

Requirements

Just-In-Time Elaboration –
Component Team‟s Responsibility

 Agile investment in documenting requirements

is minimal prior to implementation

 Features are high level, abstract

 Communicate only concept

 Little “work in process”

 At iteration boundaries, elaboration

is required

 Refine the team‟s understanding

 Support design, implementation and testing

 Define acceptance criteria

 User Stories are the currency

FEATURE

Story 1
Omnis decus

Plurubus unum

Story 2

Copyright 2008 Dean Leffingwell

i

AIM

Vision and Lean Requirements

Intentional Architecture

Collaborative, multi-level Release

Planning

Copyright 2008 Dean Leffingwell

Intentional Architecture

Continuous refactoring of large-scale, system-level

architectures is problematic:

 Substantive rework for large numbers of teams

 Some of whom would otherwise NOT have to refactor their

component or module

 Potential Impact on deployed systems/ users

 Best possible BVT (Build Verification Tests) are imperfect

 Common architectural constructs ease usability, extensibility,

performance and maintenance

Copyright 2008 Dean Leffingwell

For systems of scale, some “intentional architecture”

is necessary

Principles of Agile Architecture

Principle # 1 The teams that code the system design the

system.

Principle # 2 Build the simplest architecture that can

possibly work.

Principle # 3 When in doubt, code it out.

Principle # 4 They build it, they test it.

Principle # 5 The bigger the system, the longer the runway.

Principle # 6 System architecture is a role collaboration.

Principle # 7 There is no monopoly on innovation

Copyright 2008 Dean Leffingwell

System Architecture is a role

collaboration

Copyright 2008 Dean Leffingwell

System/

Portfolio

Team

Component

Team

Story

Creation

Product

Manager

Agile

Master

Customers

Stakeholders

Product

Owner

Tech lead/

architect

System

Architect

Product

Vision

Architectural

- Inputs

- Ideas

- Constraints

Value Stories

+ Arch. Spikes

Design

Spike

Architects and tech leads collaborate on

stories to test and prove architectural

assumptions

AIM

Vision and Lean Requirements

Intentional Architecture

Collaborative, multi-level

Release Planning

Copyright 2008 Dean Leffingwell

Copyright 2008 Dean Leffingwell

Multi-level Release Planning

 Agile maturity requires planning cycles

longer than a sprint

 Planning requires managing complex

interdependencies amongst teams

 Collaborative, multi-level Release Planning is

the seminal event

 Requires some rules, some practice and an

“agile release train” delivery model
Copyright 2008 Dean Leffingwell

Only the teams themselves can plan and

manage this complexity

Only the teams can commit to the schedule

Component Agile is not System Agile

System

Iterate HardenIterateIterate Iterate HardenIterateIterate

Internal Release

External Release

Ports and certs

Release docs

A

Iterate HardenIterateIterate Iterate HardenIterateIterate

Internal Release

External Release

Ports and certs

Release docs

B

Iterate Harden

Internal Release

C Iterate Iterate HardenIterate

External Release

Release docs

……. tme spent thinking you are on track…...

Planned system release date

Integrate

and slip!

time when you discover you

are not

Components

The slowest component drags

the train

Copyright 2008 Dean Leffingwell

Rules of the Agile Release Train

 Iteration lengths and release dates are fixed

 Intermediate system integration milestones are
established

 Constraining these means that component
functionality must flex

 Shared infrastructure components must track ahead

 Component providers evolve to a flexible model:
 Design spectrum for new

functionality

 Backup plan to ship the
old version if necessary

Copyright 2008 Dean Leffingwell

Synchronized Agile Release Train

S

H

I

P

!

Copyright 2008 Dean Leffingwell

6 months

Legend:
s – development sprint

h – hardening sprint

Internal release – two-

sprint, potentially

shippable increment

External

Release

R
e

le
a

s
e

 p
la

n
n

in
g

s
4 wks

Internal

Release

4 wks

R
e

le
a

s
e
 p

la
n

n
in

g

s s
4 wks

Internal

Release

4 wks

s s
4 wks 4 wks

h

Example Release Planning Cadence

Six Sprints in a six month time box

R
e
le

a
s

e
 p

la
n

n
in

g

The Seminal Event
Release Planning – Day 1

9-10

10-11

11-12

12-1

1-2

2-3

3-4

4-6

I1 I3I2 I4

I1 I3I2 I4

architects

Product managers/Product

Owners

• State of the business

• Objectives for upcoming periods

• Objectives for release

• Prioritized feature set

Executives

PMs

• Each team presents plans to group

• Issues/impediments noted

• Issues/impediments assigned

• Release commitment vote?

• Teams plan stories for iterations

• Work out dependencies

• Architects and PMs, POs circulate

Product Vision

Team Breakouts

Draft Release Plan

Review

Problem Solving/

Scope Management

Eng mgrs

Business Context

?

Copyright 2008 Dean Leffingwell

The Seminal Event
Release Planning Day 2

9-10

10-11

11-12

12-1

1-2

2-3

I1 I3I2 I4

I1 I3I2 I4

• Objectives for release

• Prioritized feature set

Eng mgrs/PMs

• All Issues/impediments assigned

• Release commitment vote

Eng mgrs

Revise Objectives?

Plan/Re-plan

as necessary

Final Plan

Review

• What did we learn?

• Multi-release

planning

Product ManagersDev teams

Commitment

Copyright 2008 Dean Leffingwell

IR1

May 15, „08

IR2

May 22, ‟08

IR3

July „08

Features

• Road Rage Completed

(single user)

• Brickyard Ported
(single user)

• Road Rage multiuser
demonstrable

• First multiuser game
feature for Road Rage

• New features (see
prioritized list)

• Beemer game in Alpha

Features

•Multiuser Road Rage
first release

• Brickyard Ported
multiuser demo

• New features for both
games (see prioritized
list)

• Beemer game to E3
Tradeshow?

Features

• Road Rage Ported
(part I)

• Brickyard port started
(stretch goal to
complete)

• Distributed platform
demo

• ALL GUIs for both
games demonstrable

• New features (see
prioritized list)

• Demo of Beemer game

•First two games available

(Road Rage and Brickyard)
•First distributed game

(Road Rage)

• Game 1 Demo - Proof of

viability on new platform

Roadmap Output :
System Team‟s Responsibility

Copyright 2008 Dean Leffingwell

Copyright 2008 Dean Leffingwell

Wait, don‟t fire!

AND

In the agile enterprise, managements

need for results must be greater than

the need to control

Wait, Don‟t Fire!

Copyright 2008 Dean Leffingwell

‒Toyota‟s Takeuchi and Nonaka

The New New Product development Game

Harvard Business Review, 1986

(excerpts from the roots of Scrum)

“Although project teams are largely on their own, they

are not uncontrolled. Management establishes enough

checkpoints to prevent instability, ambiguity, and tension

from turning into chaos.

At the same time, management avoids the type of rigid

control that impairs creativity and spontaneity. Instead,

the emphasis is on “self-control”, “control through peer

pressure” and “control by love”.

What your teams may be seeing

Courtesy, Trail Ridge Consulting, Ltd.

Agile Guidelines

 But it is appropriate to create agile guidelines

as governance documents

 What agile means in this company

 Our expectations for agile behavior

 Define unambiguously agile mandates

 Examples: unit testing, retrospectives, daily standup

Copyright 2008 Dean Leffingwell

But

 As lightweight as possible

 3-5 pages

 Serve as templates for additional site-based or

project specific guidelines

 put in place by the local teams themselves

 Recommend, but don‟t over-prescribe
 Especially around controversial practices

 Pair programming, TDD, tooling, requirements management

Copyright 2008 Dean Leffingwell

Have patience:

and watch for these anti-patterns…

 Company likes the potential benefits of agile, but applies

the same controls, interrupts and fixed schedule

commitments as before

 Insufficient refactoring of testing organizations and

inadequate test automation

 Lack of team proficiency in agile technical practices

 iterations and sprints treated as demo milestones, rather than

shippable increments

 Insufficient depth/competency in the critical product

owner role

 Inadequate coordination of vision and delivery strategies

 due to lack of coordinated, multi-level release planning
Copyright 2008 Dean Leffingwell

More from Dean Leffingwell

 Scaling Software Agility: Best Practices for

Large Enterprises, Addison-Wesley 2007

 Blog and Resources

 www.scalingsoftwareagility.wordpress.com

 Website

 www.leffingwell.org

 Reach me at deanleffingwell@gmail.com

