
1 Scaling Software Agility: Best Practices for Large Enterprises ©2007 Pearson Education

Leffingwell, LLC.

Whitepaper

Systems of Systems and the Agile Release Train: An
Agile Whitepaper

Dean Leffingwell

Abstract:
As agile development methods are applied to building larger and larger systems, it becomes necessary
to anticipate, plan for, and manage dependencies among distributed agile teams. This necessitates
more planning and better coordination of release cycles. In order to address this problem, we
recommend an “agile release train” delivery model and metaphor which synchronizes teams as well as
the maturity of their software assets to provide frequent and timely solution delivery to the
marketplace. In so doing, we can achieve levels of agility, productivity, and quality far in excess of what
we could accomplish with a more ad hoc, asynchronous model.

This paper is an excerpt from Dean’s book, Scaling Software Agility: Best Practices for Large Enterprises,
Addison Wesley, 2007 and is reproduced with the permission of the publisher.

2 Scaling Software Agility: Best Practices for Large Enterprises ©2007 Pearson Education

Contents

Introduction... 3

An Agile Component Release Schedule .. 4

Lessons Driving the Agile Train .. 6

Principles of the Agile Release Train ... 6

The Agile Release Train ... 7

The Train Is Synchronized .. 7

The Train Is Driven by the Vision, Themes, and End-to-End Use Cases 8

Keeping the Train on the Tracks and on Schedule .. 8

Measuring Course and Velocity... 8

Observing System-Level Patterns .. 9

Managing Interdependencies ... 10

Release Train Retrospective .. 10

3 Scaling Software Agility: Best Practices for Large Enterprises ©2007 Pearson Education

When building large-scale systems of systems in a substantially agile manner, the

practice of agility gets a little more complicated. But then, what doesn’t?

Introduction

In earlier chapters, we spent time discussing complications that arise when systems get large
enough to expand beyond the boundaries of what can be accomplished by one or two collocated, agile
component teams. Indeed, many of the assumptions that the lighter weight methods have used to
teach us agility may no longer apply.

In Chapter 16, Intentional Architecture, we looked at ways of organizing around the systems

architecture so that local teams could operate in an almost completely agile and self-contained fashion,
and we also illustrated how the interfaces between these teams would become increasingly more
important as the scope of the system increased. In Chapter 17, Lean Requirements at Scale, we
described a set of methods, including establishing and communicating the vision as well as defining and
documenting common and mandated requirements (such as GUI standards, internationalization
requirements, usability standards, regulatory and compliance standards, and system and performance
standards) that are to be applied to the system as a whole and that provide an umbrella for the work
that follows.

Also, in Part Two of the book, we described a set of best practices for the component teams that

create an agile and reliable software production machine that we can now use to address ever-larger
scale problems. Taken together, we now have the team skills, assets, and artifacts necessary to
approach building systems of very large scale.

In this chapter, we look at agile planning and management constructs that are necessary to plan

and build these larger-scale systems. And since we already illustrated that planning and agile are not
mutually exclusive constructs, we extend what we’ve learned so far and do a little more planning than
we have had to apply up until this point.

Specifically, as systems scale, it becomes necessary to anticipate, plan for, and manage

dependencies among distributed teams of component developers. This necessitates more planning and
typically somewhat longer release cycles (up to 3 or 4 months) to accomplish. In order to attack this
problem, we use a component-based, “agile release train” delivery model and metaphor. In so doing,

4 Scaling Software Agility: Best Practices for Large Enterprises ©2007 Pearson Education

we can achieve levels of agility, productivity, and quality far in excess of what we could accomplish with
our more traditional models.

An Agile Component Release Schedule

Prior to converting a team to agile practices, the time line model for a project might appear as in
the figure 18–1.

In this model, we see the waterfall activities providing a sequential view of requirements, then

design, then development, then test, followed by any system-level testing activities plus porting and
certification, user documents, and all other activities required to prepare the whole product for
release. As we discussed, this model postpones most of the project risk until late in the time line, so we
abandoned this model in favor of our new agile model, as illustrated in Figure 18–2.

In this figure, we see a typical agile component release schedule that provides internal or external

releases of the component approximately every 60 days. (We applied the three iterations plus
hardening pattern described in Chapter 13.) Iterations and internal releases provide constant visibility

5 Scaling Software Agility: Best Practices for Large Enterprises ©2007 Pearson Education

into the state of the project, and with some judicious, proactive, scope management, the time line is
far more likely to be achieved.

Although this schedule is likely to be a substantial improvement over what the component team

was able to do in the past and will produce better results, if we simply, blindly combine agile
component release schedules at the system level, the release plan shown in Figure 18–3 emerges.

From this figure, you can see we have still not accomplished a reliable and synchronized release
schedule. There are a number of reasons:

 The dreaded system integration phase is still largely with us, even though we have the
component teams marching on a highly agile schedule! This is because the components
themselves, while fully tested in their context, have not really been tested at the systems level.
The net result is delayed risk discovery and likely schedule slips (and we thought we were
agile).

 Forcing integration points to address this problem is compounded by the fact that one of the
teams (Team C) operates on an entirely different cadence than the other teams, making
integration asynchronous and awkward.

 The slowest component (Team C again) drives the actual delivery date, and you don’t really
know it until you get there.

6 Scaling Software Agility: Best Practices for Large Enterprises ©2007 Pearson Education

In addition, decisions made near the release date are late-breaking compromises rather than early
and conscious collaborations, reminding us very much of the problems of the traditional methods we
were trying to avoid.

These problems are often compounded by large-scale architectural changes that were driven into

the release at either the component or the system level. Since it is a new release after all, there are lots
of new features, and some of those features require new infrastructure to be built. This late discovery
process causes large-scale ripple effects back to the component teams. In the absence of fallback plans,
with this model, the agile teams will still feel much of the pain of traditional methods.

Lessons Driving the Agile Train

We conclude from this experience that there must be a better way, and we need to adjust our
system-level release strategies to become more agile as well. We also conclude that attempting to
coordinate disparate component team milestones to an optimum release date is an over-constrained
problem:

 There is no optimum date across all teams.

 The more teams there are, the more difficult it is to coordinate team milestones. For example,
with distributed multinational teams, even holiday schedules do not align, so picking an
optimum date for system release is likely impossible.

 Even if we worked out all the interdependencies (varying team calendars, etc) and we could
determine an optimum date, it wouldn’t match the external event calendar anyway (trade
show dates, analyst briefing seasons, calendar-based events, and the like).

Instead, management must put a stake in the ground and mandate to the teams: We will ship this
often, and we will meet these dates. However, in so doing, management must also recognize that
specific decisions regarding individual component functionality must be left to the teams. Otherwise,
everything is fixed: functionality, resources, and schedule. The result cannot be an agile process, and
the teams are likely to fail to deliver.

Achieving effective release planning and meeting release dates for large-scale systems becomes the

true art (agile release train) of the agile enterprise.

Principles of the Agile Release Train

To address the challenges of planning and scheduling, the agile enterprise must create a fixed set of
rules that are imposed upon all the teams, and then leave the teams to figure out how to accomplish
the mission. For the agile release train, these principles include the following:

 Frequent, periodic release dates for the system, platform, or solution are fixed and inviolate
and known to all team members.

 Certain intermediate, global integration milestones are established and enforced.

 Even better, wherever possible, continuous system integration is practiced at the top system
level as well as at the component level. This is not a trivial task, but it can be accomplished over
time for most systems. As top system-level integration becomes the case, intermediate
milestones typically evolve to be regular, internal releases available for customer preview,
internal review, and system-level QA and testing.

 Constraining teams to the dates means that functionality for the components must be flexible.

 Certain infrastructure components, items such as common interfaces, system development
kits, common installs, and the like, must typically track ahead of the component teams so they
are available as necessary as the components advance.

7 Scaling Software Agility: Best Practices for Large Enterprises ©2007 Pearson Education

 Each component supplier must evolve to a flexible new model: to be assured of meeting a
date, a team typically needs to have both a primary plan and a fallback plan (each somewhere
on the design continuum described in Chapter 17). In some cases, the fallback plan can be a
simple as planning to ship the old version, if necessary, so long as the team tracks to any new
interfaces and other common requirements that may be imposed on the release

The Agile Release Train

The result of this is the synchronized release train model is illustrated in Figure 18–4.

This Train Is Synchronized

In this model, all component teams are synchronized to the same iteration schedule. While this is
not absolutely mandatory, it is extremely beneficial, and we might question why an enterprise could
not simply mandate a synchronized iteration schedule. Again, in so doing, management is only
mandating that the iterations be of one fixed length and that they all begin and end at the same time—
management does not mandate what the iterations contain or how the team does its work.

8 Scaling Software Agility: Best Practices for Large Enterprises ©2007 Pearson Education

In addition, continuous integration has been applied at the system level, so the system now has
iterations and internal releases available for customer assessment just like the components do. This
gives the team the objective evidence it needs to adjust system and component scope in real time and
to shake out the issues that lie around the interfaces of the system. The risk is addressed early, rather
than late, in the release cycle.

The slowest team no longer drives the train. Its relatively slower progress is detected early, scope is

adjusted or resources are added, or in any case, the team has the data it needs to take the appropriate
action to get the train to the station on time.

The Train Is Driven by the Vision, Themes, and End-to-End Use Cases

The input to the release train comes from the scalable release planning process described in
Chapter 12. The vision is also an overriding presence to the planning process. It has been articulated in
whatever agile manner the team so chooses, and it is known and available to all component teams. The
vision input also includes the themes and highest level features for the system-level releases as well as
any end-to-end use cases (i.e., those use cases that span the individual components to deliver end user
value). Common system requirements (internationalization, accessibility, etc.) as well as the
nonfunctional requirements (the “-ilities”) are also known and factored into the individual component
release plans.

Keeping the Train on the Tracks and on Schedule

Clearly, this train can neither design nor drive itself. As we described in Chapter 12, to achieve this
model, companies organize around higher level management structures, often including a steering
committee or release train management, as well as a Scrum of Scrums. But no matter the label, a team
must exist to take responsibility for planning and managing the agile release train.

This team typically consists of some number of senior team leaders, development directors, QA

personnel, and one or more system architects who together have the authority and responsibility to
make sure the train delivers its goods on time. Responsibilities of this team (we’ll call our team the
Release Management Team, or RTM team for short) include:

 Setting the train schedule and all the integration milestones.

 Communicating the vision, including common requirements for the release (or the series of
releases) to the team.

 Leading the release planning meeting that organizes the teams activities.

Quality members of the release team aggregate defects for system-level reporting to the RMT.
They also continually concern themselves with overall system performance and reliability, as well as
any blocks or issues associated with the build or integration problems. They also focus on all the other
aspects of the “whole product solution,” including items such as documentation, common install
utilities, help systems, and any distribution, deployment, or support infrastructures necessary for
successful delivery of the train to its users and stakeholders.

Measuring Course and Velocity

Typically, the RMT meets at least weekly to assess status, find and eliminate roadblocks, and adjust
scope as necessary. Because a change to the plan of record is likely to affect some or all of the
component teams, the RMT also has a responsibility to communicate any changes in plans or scope

9 Scaling Software Agility: Best Practices for Large Enterprises ©2007 Pearson Education

that it has determined to be necessary. The RMT should understand as part of the analysis that any
changes in scope have a potential ripple effect through the teams.

At each internal release or other established milestone, the RMT team meets to analyze whether

that particular milestone was met and whether the teams were able to deliver to the theme. It is also
likely that some technical debt, such as necessary refactors, adjustments in scope, defect build-up, or
deferred stories or features, is likely to have occurred. Based on this data, the RMT assesses the risks
and reviews and revises the plan of record as necessary; it also considers any fallback plans that might
be necessary to keep the train on schedule.

Observing System-Level Patterns

Because of the inherent measurability of the agile team process being applied, the release team
will have access to constant real-time data regarding how the component teams and system-level
efforts are progressing toward the goal. The RMT will likely soon notice that certain patterns begin to
develop:

 Teams will exhibit varying velocities of conformance to the iteration plan. In other words, some
teams will have relatively higher or lower rates of story achievement. This is a predictive
measure, and the RMT can take such variances into account as it considers the current velocity
and course of action.

 It is also likely that some teams start to run consistently late on release objectives. In that case,
some coaching or additional, alternative resolution may be required. Perhaps scope
management, adjustments to team members, additional resources, or realignment will help
that team to succeed.

Note: The fact that a team is lagging does not mean it is necessarily a low-performing team.
Infrastructure teams that have many interfaces and teams that take on significant technical risk, as well
as teams that are good but overly optimistic, are often the teams that lag. Although lagging does not
necessarily indicate a quality or performance measure for the team, it still must be addressed, or the
train will not depart its destination on time.

Quality assurance plays a key role in this process as well. QA personnel will be collecting whatever
metrics the teams create naturally, including the iteration metrics described in Chapter 15, and they
will also be aggregating quality reports that summarize defects found across components and those
attributed to the system level. These metrics give the RMT weekly objective status information about
where the teams are. Fortunately, with agile, the team’s agile metrics provide the raw data without
much additional overhead.

Interdependencies Often Appear as Critical Blocks. Because the agile teams will have advanced

their skills to the point where they can generally achieve the objectives that are within their control,
and because they have accountability for specific components, they will naturally gravitate toward
tasks that are under their control to assure their component is on schedule. However, interfaces among
the teams, ambiguities among interface specifications, and assumptions that went into those
interfaces, will likely create blocking issues that will appear on the release train tracks. These blocking
issues must often be addressed by the RMT because they typically fall between component teams,
affect multiple component teams, or even affect or impact teams outside the development
organization.

10 Scaling Software Agility: Best Practices for Large Enterprises ©2007 Pearson Education

Managing Interdependencies

As the individual component team’s velocity and quality come to be understood, and as corrective
actions are taken as necessary, and as the release date approaches, the RMT will often have to become
actively involved in managing interdependencies. Much of this role will naturally fall to the system
architects and senior product managers, but a few caveats should be applied:

1. Component teams are responsible and accountable for their mutual interfaces. In other words,

responsibility for having interfaces work may not be “delegated up” to the system-level
architects. Having mutual interfaces work is just one of the responsibilities of a component
team, and this responsibility must be understood by the team.

2. In the extreme case, interfaces such as SDKs and APIs may need to be implemented as
components themselves, and a dedicated team becomes responsible for implementing that
abstraction layer and for communicating and testing interfaces to other components.

The Release Management Team can help with the management of these interdependencies by
assuring that there is architectural review of these key interfaces in the planning and there is a focus on
developing and testing these interfaces in the earliest iterations. Insisting on early and continuous
integration is the most constructive move of all. For as continuous integration is accomplished at this
highest system level, issues with the interfaces will expose themselves very quickly, and the component
teams can adjust their course of action as necessary to minimize the risk and achieve the objectives.

Release Train Retrospective

In a manner similar to the iteration and release retrospectives that we described for component
teams in Chapter 15, the RMT has the same set of responsibilities at the end of each release. A release
train retrospective may not occur frequently, but it is an important element of regular reflection and
adaptation, and the process is quite similar. The RMTs meet as a team and ask the following questions:

What did we deliver versus what we expected to deliver?
What debt did we incur?
What went well?
What needs improvement?
What one big thing could we do better next time?

The results of this larger scale retrospective will be of great interest to all team members, so results
should be widely disseminated. The conclusions and takeaways can be folded into the next release
planning session, and in this way an additional and continuous process improvement cycle works at the
system of systems release level.

