
© 2009 Leffingwell, LLC.

Scaling Software Agility:
Best Practices for Large

Enterprises

Dean Leffingwell
Agile 2009

Chicago, IL
August 26, 2009

1

© 2009 Leffingwell, LLC.

About Dean Leffingwell

2

© 2009 Leffingwell, LLC.

More from Dean Leffingwell

3

© 2009 Leffingwell, LLC.

If you accept the premise that market needs
change faster than the software industry’s
traditional ability to develop solutions, you’re left
with the question “what can we do about it?” For
me, the answer is Agile.

Israel Gat, Vice President,
Infrastructure Management, BMC Software, Inc.

4

© 2009 Leffingwell, LLC.

BMC Results

QSM Associates press release
  … remarkable levels of time-to-market and quality
  … produce large scale enterprise software in 4-5 months,

compared to typical one year
  … exceptional time-to-market without sacrificing quality
  … especially noteworthy - BMC 'Secret Sauce‘ enables

process to succeed in spite of geographically dispersed
teams
–  “Other companies experience higher defects and longer

schedules with split teams, BMC does not. I've never seen
this before. The low bug rates also result in very low defect
rates post-production”

  … clearly ahead of more than 95 percent of all the software
projects captured in the SLIM metrics database, they're
among the best I've seen

Source: QSM Associates Press Release, Sep 10, 2007

5

© 2009 Leffingwell, LLC.

Approaching Challenge at Scale

“We place the highest value on actual implementation and taking action.

There are many things one doesn’t understand; therefore, we ask them,
why don’t you just go ahead and take action?

You realize how little you know, and you face your own failures and redo it
again, and at the second trial you realize another mistake . . . So you can
redo it once again.

So by constant improvement one can rise to the higher level of practice
and knowledge.

This guidance reminds us that there is no problem too large to be solved if
we are only willing to take the first step.”

Fuijo Sho, President, Toyota

6

© 2009 Leffingwell, LLC.

What Is Software Agility?

7

© 2009 Leffingwell, LLC.

Team Agility

A disciplined set of
–  enhanced software engineering practices
–  empirical software project management practices
–  modified social behaviors

That empowers teams to:
–  more rapidly deliver quality software
–  explicitly driven by intimate and immediate customer feedback

8

© 2009 Leffingwell, LLC.

Achieving Team Agility

1.  The Define/Build/Test Team

2.  Mastering the Iteration

3.  Two-levels of Planning and Tracking

4.  Smaller, More Frequent Releases

5.  Concurrent Testing

6.  Continuous Integration

7.  Regular Reflection and Adaptation

9

© 2009 Leffingwell, LLC.

Enterprise Agility

That harness large numbers of agile teams to build
and release quality enterprise-class software more
rapidly than ever before
Explicitly driven by intimate and immediate customer
feedback

A set of
–  organizational best practices
–  core values and beliefs

10

© 2009 Leffingwell, LLC.

Achieving Enterprise Agility

1.  Intentional Architecture

2.  Lean Requirements at Scale

3.  Systems of Systems and the Agile Release Train

4.  Managing Highly Distributed Development

5.  Impact on Customers and Operations

6.  Changing the Organization

7.  Measuring Business Performance

11

© 2009 Leffingwell, LLC.

Agile Turns Tradition Upside-Down

12

© 2009 Leffingwell, LLC.

Helps Avoid the Death March

13

Peak performance
achieved and
maintained indefinitely
at a sustainable pace

© 2009 Leffingwell, LLC.

Reduces Risk

14

© 2009 Leffingwell, LLC.

Starts Delivering Immediately

15

© 2009 Leffingwell, LLC.

Makes Money Faster

16

© 2009 Leffingwell, LLC.

Delivers Better Fit for Purpose

Measure of
waterfall customer
dissatisfaction

17

© 2009 Leffingwell, LLC.

Agile Delivers Higher

18

© 2009 Leffingwell, LLC.

►  Our implementation of agile practices . . . helps us find bugs
earlier, helps us achieve higher quality, and helps us work well
with SW QA

Jon Spence, Medtronic

►  I measure quality by the life of a defect, time measured from
injection to finding and fixing. Agile gives us solid results with
most defects living no longer than one to two iterations. Agile
delivers higher quality than anything I’ve found with the waterfall
model

Bill Wood, VP, Ping Identity Corp.

19

© 2009 Leffingwell, LLC.

►  Last year, we had 22 releases across 3 major product lines, and
not a one of them was late. We support hundreds of Fortune
1000 enterprises with a single person dedicated to support -- the
software is that solid

Andre Durand, CEO, Ping Identity Corp.

►  We increased individual developer and team productivity by an
estimated 20 percent to 50 percent

BMC Software

20

© 2009 Leffingwell, LLC.

►  Development teams are more engaged, empowered and highly
supportive of the new development process

BMC Software

►  Our implementation of agile practices . . . (1) makes the work
more enjoyable, (2) helps us work together, and (3) is
empowering

Jon Spence, Medtronic

21

© 2009 Leffingwell, LLC.

Seven Agile Team
Practices That Scale

The Define/Build/Test Team
Mastering the Iteration

Two-level Planning and Tracking
Smaller, More frequent releases

Concurrent Testing
Continuous Integration

Regular Reflection and Adaptation

22

© 2009 Leffingwell, LLC.

1. Define/Build/Test Team

23

© 2009 Leffingwell, LLC.

  A self-organizing team that can Define, Build
and Test a thing of interest

  Optimized for communication about the thing
  Repeated at larger scales to produce larger

systems
  Teams can be based on

–  Components
–  Subsystems
–  Features
–  Interfaces
–  Products

D/B/T Team – Agile Fractal

Team
1

Team
100

24

© 2009 Leffingwell, LLC.

D/B/T Teams Have the Necessary Skills

25

© 2009 Leffingwell, LLC.

The iteration is the heartbeat of agility. Master
that, and most other things agile tend to

naturally fall into place.

2. Mastering the Iteration

26

© 2009 Leffingwell, LLC.

Iteration Pattern

Story A
Story B
Story C
Story D
Story E
Story F

 Story …

Define

Pl
an

Fi
xe

d
R

es
ou

rc
es

Fixed Time (Iteration)

27

© 2009 Leffingwell, LLC.

3. Two-Level Planning and Tracking

Iteration Cycle

Release Cycle

Drives

Feedback
- Adjust

Plan Releases at the
System Level
–  Three to six months

horizon
–  Prioritized feature sets

define content

Plan iterations at the
component/feature level
–  2-4 iteration visibility
–  Currency: user stories

Release
Vision

Release Planning
Release Scope
and Boundaries

28

Iteration Planning

Develop &
Test Review &

Adapt

© 2009 Leffingwell, LLC.

Release Pattern

Prioritized
Release (feature)

Backlog

Stories

Release timebox

29

© 2009 Leffingwell, LLC.

4. Smaller, More Frequent Releases

 Shorter release dates
–  60-120 days

 Releases defined by
–  Date, theme, planned

feature set, quality

 Scope is the variable
–  Release date and

quality are fixed

30

© 2009 Leffingwell, LLC.

Fix the Dates - Float the Features

  Teams learn that dates MATTER
  Product and business owners learn that priorities

MATTER
  Agile teams MEET their commitments

10/1/2009 11/1/2009 12/1/2009 1/1/2009 2/1/2009 3/1/2009

31

© 2009 Leffingwell, LLC.

5. Concurrent Testing

  All code is tested code. Teams get no credit for
delivering functionality that is coded, but not tested.

  Tests are written before, or concurrently with, the
code itself.

  Testing is a team effort. Testers and developers all
write tests.

  Test automation is the rule, not the exception.

Philosophy of Agile Testing

32

© 2009 Leffingwell, LLC.

Concurrent

 Unit Testing
–  Developer written

 Acceptance Testing
–  Customer, product owner, tester written

 Component Testing
–  Integrated BVT (build verification tests) at component/module

level

 System, Performance and Reliability Testing
–  Systems tester and developer Written
–  QA Involvement

33

© 2009 Leffingwell, LLC.

Agile Testing Quadrants

34

Q1

Q2 Q3

Q4

Adapted from Brian Marick, Crispen and Gregory

© 2009 Leffingwell, LLC.

On Test Automation

  You have no choice
  Manual tests bottleneck velocity
  You can’t ship what you can’t test

35

© 2009 Leffingwell, LLC.

6. Continuous Integration

 Continuous integration is neither new nor invented by agile

 It has been applied as a best practice for at least a decade

 However, continuous integration is mandatory with agile

36

© 2009 Leffingwell, LLC.

Continuous Integration Success

 Team can build at least once a day
–  Effort is inversely proportional to time between builds!
–  A broken build “stops” production and is addressed

immediately

 Successful builds
–  Checks in all the latest source code
–  Recompile every file from scratch
–  Successfully execute all unit tests
–  Link and deploy for execution
–  Successfully execute automated Build Verification Test

37

Source: Martin Fowler

© 2009 Leffingwell, LLC.

Memo from an XP Shop

38

“The XP environment provides us with many benefits, not the least of which is the incredible
pace of progress we are so proud of. Lately we have had a rash of build failures, some related
to infrastructure issues, but more related to carelessness. Broken builds destroy the
“heartbeat” of an XP team. Each of you has a primary responsibility to ensure that this doesn’t
happen . . . but here are a few tips to ensure that you aren’t the one who broke the build:

–  Write your test cases before you write the code

–  Build and test the code on your desktop BEFORE you check it in

–  Make sure you run all of the cases that the build does

–  Do not comment-out inconveniently failing unit tests. Find out why they are broken,
and either fix the test or fix your code

–  If you are changing code that may affect another team, ASK before you check it in

–  Do not leave the building until you are SURE your last check-in built successfully
and the unit tests all ran

The Build master is there to make sure that broken builds get addressed, not to address them.
The responsibility for a broken build is yours. Breaking the build will have an affect on your
standing within the team and, potentially, your review, so let’s be careful out there.”

© 2009 Leffingwell, LLC.

7. Regular Reflection and Adaptation

 Periodically, the entire team including owners/end users
–  reflects on the results of the process

–  learn from that examination
–  adapt the process - and organization - to produce better results

  The team decides what is working well, what isn’t, and
what one thing to do differently next time

At regular intervals, the team reflects on how to become more
effective, then tunes and adjusts its behavior accordingly.

Agile Manifesto, Principle 12

39

© 2009 Leffingwell, LLC.

Achieving Enterprise
Agility

40

© 2009 Leffingwell, LLC.

1. Intentional Architecture

 Continuous refactoring of large-scale, system-level
architectures is problematic:
–  Substantive rework for large numbers of teams

–  Some of whom would otherwise NOT have to refactor their component or
module

–  Potential Impact on deployed systems/ users
–  Best possible BVT (Build Verification Tests) are imperfect

–  Common architectural constructs ease usability, extensibility,
performance and maintenance

For systems of scale, some “intentional architecture”
is necessary

41

© 2009 Leffingwell, LLC.

Principles of Agile Architecture

Principle #1 The teams that code the system design the
system.

Principle #2 Build the simplest architecture that can
possibly work.

Principle #3 When in doubt, code it out.

Principle #4 They build it, they test it.

Principle #5 The bigger the system, the longer the
runway.

Principle #6 System architecture is a role collaboration.

Principle #7 There is no monopoly on innovation
42

© 2009 Leffingwell, LLC.

System Architecture is a Role
Collaboration

Architectural
- Inputs
- Ideas

- Constraints

43

Architectural Evolution

© 2009 Leffingwell, LLC.

2. Lean Requirements at Scale

Requirements still matter in agile. At
scale, lean and more extensible

requirements practices can be applied.

44

© 2009 Leffingwell, LLC.

 Lean Requirements at Scale

A scalable requirements practice with three
elements

45

© 2009 Leffingwell, LLC.

Vision - Management’s responsibility

  Where are we headed as a
business?

  What problem does this product
solve?

  What features and benefits does it
provide?

  For whom does it provide it?

  What performance does it deliver?

46

© 2009 Leffingwell, LLC.

Common and Non-functional
Requirements

  Some requirements must be
known by all teams
–  Common components, common

behaviors
–  Internationalization, accessibility
–  Performance, reliability and security

requirements
–  Industry/Regulatory/Customer standards/specifications
–  Corporate standards: copyright, logo, graphics, legal

47

© 2009 Leffingwell, LLC.

Roadmap – System Team’s
Responsibility

  Road Rage Completed
  (single user)
  Brickyard Ported (single

user)
  Road Rage multiuser

demonstrable
  First multiuser game

feature for Road Rage
  New features (see

prioritized list)
  Beemer game in Alpha

  Multiuser Road Rage
first release

  Brickyard Ported
multiuser demo

  New features for both
games (see prioritized
list)

  Beemer game to E3
Tradeshow?

  Road Rage Ported
(part I)

  Brickyard port started
(stretch goal to
complete)

  Distributed platform
demo

  ALL GUIs for both
games demonstrable

  New features (see
prioritized list)

  Demo of Beemer game

48

© 2009 Leffingwell, LLC.

  Agile investment in documenting
requirements is minimal prior to
implementation
–  Features are high level, abstract
–  Communicate only concept
–  Little “work in process”

  At iteration boundaries, elaboration
is required
–  Refine the team’s understanding
–  Support design, implementation and

testing
–  Define acceptance criteria

  User Stories are the currency

Just-In-Time Elaboration –
Agile Team’s Responsibility

49

© 2009 Leffingwell, LLC.

Implemented by
Story Epic Feature

Realized by Realized by
0,1 1..* 0,1 1..*

Is one of

Backlog Item Non-functional
Requirement 0.. 0..*

Constrained by

Investment
Themes 0, 1 1..*

Realized by
Task 1 1..*

Acceptance Test

Done when passes

1..*

0..*

1..*

System Validation Test

Compliant when
passes

User
Story

Other Work Item

Unit Test Functional Test

Consists of
1

1..*

1..* 1..*

Is one of

1..*

At scale, not everything is a user story

version

*

© 2009 Leffingwell, LLC.

3. Systems of Systems and the Agile
Release Train

  Scaling agile requires managing interdependencies
amongst teams of developers

  Only the teams themselves can plan and manage this
complexity

  Only the teams can commit to the schedule

  Systematic enterprise delivery requires an “agile release
train” delivery model

  Rolling-wave Enterprise Release Planning drives release
train vision and execution

51

© 2009 Leffingwell, LLC.

Component Agile is not System Agile

52

Time when you
discover you are

not

…....time spent thinking you are on track…….

The slowest team drags the
train

© 2009 Leffingwell, LLC.

Rules of the Agile Release Train

  Periodic release dates for the solution are fixed
  Intermediate, global integration milestones are

established and enforced
  Constraining these means that component/feature

functionality must flex
  Shared infrastructure must track ahead
  Teams evolve to a flexible model:

–  Design spectrum for new
functionality

–  Backup plan to ship
less capable version
 if necessary

Lease
Imaginable

Minimum
Credible Moderate Best

53

Agile release train design continuum

© 2009 Leffingwell, LLC.

Synchronized Agile Release Train

54

H

H H

H

For discussion, see www.scalingsoftwareagility.wordpress.com

©2009 Leffingwell, LLC.

© 2009 Leffingwell, LLC.

Eng mgrs

  State of the business
  Objectives for upcoming periods

  Objectives for release
  Prioritized feature set

  Each team presents plans to group
  Issues/impediments noted

  Issues/impediments assigned
  Release commitment vote?

  Teams plan stories for iterations
  Work out dependencies
  Architects and PMs, POs circulate

|1

|1

|2

|2

|3

|3

|4

|4

architects

Product managers/
Product Owners

PMs

Executives

Rolling Wave Release Planning Drives
the Train

56

© 2009 Leffingwell, LLC.

Rolling Wave Release Planning Day 2

  Objectives for release
  Prioritized feature set

  All Issues/impediments assigned
  Release commitment vote

  What did we learn?
  Update Product Roadmap

57

Dev teams

Eng mgrs

Eng mgrs/PMs

Product Managers

|1

|1

|2

|2

|3

|3

|4

|4

© 2009 Leffingwell, LLC.

Release Commitment

58

© 2009 Leffingwell, LLC.

4. Managing Highly Distributed
Development

  Co-locate team often – at least at Release Planning
  Establish core hours, with overlap required
  Apply high cohesion and low coupling to sites (organize

and reorganize around features/components)
  Don’t let anyone go dark - apply daily Integration Scrums
  Establish a single global instance of project assets
  Invest in tools that support distributed, but shared view of

status

59

© 2009 Leffingwell, LLC.

5. Changing the Organization

  Transition as a Project
  “All in” or Incremental Rollout
  Eliminating Impediments
  Moving to Agile Portfolio Management

60

© 2009 Leffingwell, LLC.

  Establish an Agile Enterprise Transition Team
–  Drives the enterprise vision and facilitates

implementation
–  Cross-functional involvement
–  Cross-level involvement
–  Executive leadership

  Create a transition backlog
  Run project in iterations

–  Commit to weekly iteration goals
–  Meet at least weekly
–  Report to other executive stakeholders
–  Experience agile project management

Transition as a Project

61

−  Executive sponsors
−  Cross functional

© 2009 Leffingwell, LLC.

All-In or Incremental?

  Minimizes adoption risk
  More modest training resources
  Develop successful organizational

patterns
  Develop internal mentors

  Failure is an option
  Dual software processes
  Continuously re-factoring process

guidance
  Delayed enterprise benefits

  Failure not an option
  All hands on deck
  Unified software practices
  Enterprise benefits achieved most

quickly

  Enterprise disruption
  Risk of larger scale failure
  Risk of organizational buy-in
  Training and education resource

demands

All-in

Incremental

62

© 2009 Leffingwell, LLC.

Eliminating Impediments

  Existing rules demand adherence to document-driven, waterfall
processes and artifacts

  Software test/ system test not integrated, responsive
  Inadequate build and support infrastructure
  Organization rewards individual over team behavior
  Teams not co-located to maximum extent feasible
  Teams not truly empowered
  Other functions - sales, marketing, customer not supportive of

increased delivery pace
  Legacy thinking - Management expectations for fixed-price,

fixed-time, fixed-function delivery

63

© 2009 Leffingwell, LLC.

Moving to Agile Portfolio Management

64

Investment
Funding

“widget
engineering”
“order taker
mentality”

Epic based
portfolio planning

Intense
development
collaboration

Change
Management

“Maximize
utilization”

“Get it done”

Fixed resources
short term only

Team commitments
Adjust priorities

quarterly

Governance and
Oversight

“Control through
milestones/data”

“plan out a full year
of projects”

Control through
empirical release

increments
Rolling wave

release planning

Changing Legacy Mindsets

From:

To:

DTE Energy Case Study, Agile 2009

© 2009 Leffingwell, LLC.

6. Impact on Customers and Operations

More frequent releases challenge:
–  Customers
–  Suppliers
–  Marketing and Sales
–  Support
–  Documentation, certification, localization

65

© 2009 Leffingwell, LLC.

Solution: Separation of Concerns

© 2009 Leffingwell, LLC.

7. Measuring Business Performance

67

The primary metric for agile is whether or not
working software actually exists, and is

demonstrably suitable for its intended purpose.

This is determined empirically, by demonstration,
at the end of every single iteration.

All other measures are secondary
 ….. (but not useless)

© 2009 Leffingwell, LLC.

Release theme established and communicated

Release planning meeting attended and effective

Release backlog defined

Release backlog ranked by priority

Release backlog estimated at plan level

The team has small and frequent releases

The team has a common language and metaphor to describe the
release

Release progress tracked by feature acceptance

Team completes and product owner accepts the release by the
release date

Release review meeting attended and effective

Team inspects and adapts (continuous improvement) the release
plan

Team meets its commitments to release

Total Release Planning and Tracking Score

Process Self-Assessment Metrics

Backlog prioritized and ranked by business value

Backlog estimated at gross level

Product owner defines acceptance criteria for stories

Product owner and stakeholders participate at iteration and
release planning

Product owner and stakeholders participate at iteration and
release review

Product owner collaboration with team is continuous

Stories sufficiently elaborated prior to planning meetings

Total Product Ownership Score

All testing is done within the iteration and does not lag behind

Iteration defects are fixed within that iteration

Unit tests are written before development

Acceptance tests are written before development

100% automated unit test coverage

Automated acceptance tests

Total “Testing” Practices Score

Iteration progress tracked by task to do (burn-down chart) and
card acceptance (velocity)

Work is not added by the product owner during the iteration

Team completes and product owner accepts the iteration

Iterations are of a consistent fixed length

Iterations are no more than 4 weeks in length

Iteration review meeting attended and effective

Team inspects and adapts (continuous improvement) the iteration
plan

Total Iteration Planning and Tracking Score

68

© 2009 Leffingwell, LLC.

Team Agility Assessment Radar Chart

Product Ownership

Development Practices/
Infrastructure

Release Planning and Tracking

Testing Practices Iteration Planning and Tracking

Team

150%

125%

100%

75%

50%

25%

0%

69

© 2009 Leffingwell, LLC.

Watch for these Anti-patterns…

  Insufficient refactoring of testing organizations and
inadequate test automation

  Lack of team proficiency in agile technical practices
–  iterations and sprints treated as demo milestones, rather than

potentially shippable increments

  Insufficient depth/competency in the critical product
owner role

  Inadequate coordination of vision and delivery strategies
–  due to lack of coordinated, multi-level release planning

70

© 2009 Leffingwell, LLC.

Summary

1.  The Define/Build/Test Team
2.  Mastering the Iteration
3.  Two-level Planning and

Tracking
4.  Smaller, More Frequent

Releases
5.  Concurrent Testing
6.  Continuous Integration
7.  Regular Reflection and

Adaptation

1.  Intentional Architecture
2.  Lean Requirements at Scale
3.  Systems of Systems and the

Agile Release Train
4.  Managing Highly Distributed

Development
5.  Changing the Organization
6.  Impact on Customers and

Operations
7.  Measuring Business

Performance

71

