
© 2008-2010 Leffingwell, LLC.

Scaling Software Agility:
Rearchitecting Enterprise

Class Systems

An Agile Enterprise Trifecta

By Dean Leffingwell
May, 2010

© 2008-2010 Leffingwell, LLC.

About Dean Leffingwell

2

© 2008-2010 Leffingwell, LLC.

More from Dean Leffingwell

3

© 2008-2010 Leffingwell, LLC.

Rearchitecting with Flow – An Agile
Enterprise Trifecta
①  Lean and Scalable Requirements Model
②  The Agile Release Train
③  An Architectural Epic Kanban System

4

© 2008-2010 Leffingwell, LLC.

#1 – A LEAN AND SCALABLE
REQUIREMENTS MODEL
 - REASONING ABOUT
 SMALL AND BIG THINGS

The	
 Agile	
 Team	
 in	
 The	
 Enterprise	

H	

H	
 H	

H	

	

There can be a large number of
teams in the enterprise

“pods” of 5-10 teams building a
feature, component, or subsystem
is not unusual

Some product lines require
30-40-50 teams to build

However, the structure of each
team is largely the same

© 2008-2010 Leffingwell, LLC.

Their work is based on the user story

User
Story

As a <role>
I can <activity>

So that <business value>

“As a Gmail user, I can select and highlight
a conversation for further action”

© 2008-2010 Leffingwell, LLC.

Stories drive iterations

Story A
Story B
Story C
Story D
Story E
Story F

 Story …

Pl
an

Fi
xe

d
R

es
ou

rc
es

Fixed Time (Iteration)

8

© 2008-2010 Leffingwell, LLC.

Implemented by Story

Is one of

Backlog Item

Task
1 1..*

Stories are maintained in the teams
backlog

There is only one backlog
for the team

All work comes from the
backlog

If isn't a user story (defect,
etc) it still goes in the
backlog

“If there isn’t a story in the
backlog, it ain’t gonna
happen”

© 2008-2010 Leffingwell, LLC.

Implemented by Story

Is one of

Backlog Item

Task
1 1..*

Acceptance Test

Done when
passes

1..*

1

A test and quality-centric approach

Teams perform unit testing
and functional testing for
every story

The details of the story go
into the functional test,
where they are the
persistent representation
of system behavior

Stories are temporal (not
maintained after
implementation)

Unit Test Functional Test

Consists of
1

1..* 1..*

© 2008-2010 Leffingwell, LLC.

Scaling requires rethinking

  Assume a program requires
–  200 practitioners, (25 agile teams) to deliver a product
–  The enterprise delivers software every 90 days in five, two

week iterations.
–  Each team averages 15 stories per iteration.
–  Number of stories that must be elaborated and delivered to

achieve the release objective = 25*5*15= 1,875!

  How is an enterprise supposed to reason about things?
–  What is this new product going to actually do for our users?
–  If we have 900 stories complete, 50% done, what do we

actually have working? How would we describe 900 things?
–  How will we plan a release than contains 1,875 things?

  And, what if it took 500 people?
11

© 2008-2010 Leffingwell, LLC.

And further

  And, even if I know 100 things that “as a <role> I
can <activity> so that <business value>”, can do

what Features does the system offer to its user
and what benefits does it provide?

12

Feature Benefit
Stars for conversations Highlight conversations of

special interests
Colored label categorization Easy eye discrimination of

different types of stories
(folder like metaphor)

Smart phone client
application

Faster and more facile use
for phone users – ease
adoption

© 2008-2010 Leffingwell, LLC.

So we need an additional level of planning

Iteration Cycle

Drives

Feedback
- Adjust

Product & Release Cycle

Release
Vision

Release Planning
Release Scope
and Boundaries

13

Iteration Planning

Develop &
Test Review &

Adapt

Features

Stories

© 2008-2010 Leffingwell, LLC.

Which creates an iteration and release
pattern

Stories

Release timebox

14

© 2008-2010 Leffingwell, LLC.

Implemented by Story Feature Realized by
0,1 1..*

Is one of

Backlog Item

Task
1 1..*

So we need to extend the information
model

Features are
another kind of
Backlog Item

Introduce Gmail “Labels” as a “folder-like” conversation-
organizing metaphor.

Or:

As a modestly skilled user, I can assign more than one
colored label to a conversation so that I can see a
conversation from multiple perspectives

© 2008-2010 Leffingwell, LLC.

Implemented by Story Feature Realized by

Is one of

Backlog Item

Task
1 1..*

Features also require testing

0,1 1..*

Acceptance Test

Done when
passes

1..*

1 1

And maybe a new team …..

Features typically span
many teams

Sometimes, a special team is dedicated for
the purpose of testing system level
features

© 2008-2010 Leffingwell, LLC.

What about non-functional requirements?

  Features and user stories express functional
requirements

  But other requirements (NFRs) determine
system quality as well:
–  Performance, reliability and security requirements
–  Industry and Regulatory Standards
–  Design constraints, such as those that provide common

behavior across like components

  Typically, these system level qualities
–  Span multiple components/products/applications/

services/subsystems
–  Can often only be tested at the system level

17

© 2008-2010 Leffingwell, LLC.

Implemented by Story Feature Realized by
0,1 1..*

Is one of

Backlog Item Non-functional
Requirement

Constrained by

Task
1 1..*

Acceptance Test

Done when
passes

1..*

1 1

0..* 0..*

NFRs can be considered as constraints
on new development

 “When we add labels
to conversations, we
still have to meet the
accessibility
standards.”

© 2008-2010 Leffingwell, LLC.

Implemented by
Story Feature

Realized by

0,1 1..*

Is one of

Backlog Item Non-functional
Requirement

Constrained by

Task
1 1..*

Acceptance Test

Done when
passes

1..*

1 1

0..*

1..*

System Validation Test

Compliant when
passes

0..* 0..*

Which must also be tested

Often requires
specialty skills
and tools

May also be
province of
system team

1

© 2008-2010 Leffingwell, LLC.

At the enterprise portfolio level, even
system features are too fine grained
  There may be dozens of concurrent programs
  Each delivering dozens of features to market
  How do portfolio managers and system

architects communicate the sweeping, larger
scale initiatives that drive those programs?

  We use the word “Epic” to describe this content
type

20

© 2008-2010 Leffingwell, LLC.

Implemented by Story Epic Feature Realized by Realized by
0,1 1..* 0,1 1..*

Is one of

Backlog Item Non-functional
Requirement

Constrained by

Task
1 1..*

Acceptance Test

Done when
passes

1..*

1 1

0..*

1..*

System Validation Test

Compliant
when
passes

0.. 0..*

Epics drive programs with features
Epics are key value
propositions that create
competitive advantage

Epic may be implemented
over long periods, even
years

Epics may be user, or
technology based

Big, abstract, high level,
visionary

Arch User

© 2008-2010 Leffingwell, LLC.

Architectural Epics

 Large, technology development initiatives,
 cutting across dimensions:

Time – affecting multiple releases of products,
systems, services or solutions
Scope – affecting multiple products, systems, services,
or solutions
Organization – affecting multiple teams, programs,
business units

Examples
–  UI framework for porting existing apps to mobile devices
–  Common installer and licensing mechanism
–  Industry security standard to lower data purchasing costs
–  Support 64 bit back office servers

22

© 2008-2010 Leffingwell, LLC.

#2 – THE AGILE RELEASE TRAIN
 - DRIVING STRATEGIC ALIGNMENT
 - IMPLEMENTING ENTERPRISE PRODUCT
 DEVELOPMENT FLOW

© 2008-2010 Leffingwell, LLC.

Flow Principles Drive the Release Train

1.  Take an economic view
2.  Actively manage queues
3.  Understand and exploit variability
4.  Reduce batch sizes
5.  Apply WIP constraints
6.  Control flow under uncertainty - cadence and

synchronization
7.  Get feedback as fast as possible
8.  Decentralize control

24

Reinertsen, Principles of Product Development
Flow, 2009.

© 2008-2010 Leffingwell, LLC.

Agile Principles Drive the Release Train

  Incremental build and delivery of value
  Fixed (date, quality, resources) vs. variable

(scope) parameters.
  Smaller and more frequent releases (smaller

batch sizes)
  Decentralized planning
  Continuous, system-level integration

25

© 2008-2010 Leffingwell, LLC.

Fixed: Cost, Quality, Schedule

26

Variable: Scope

© 2008-2010 Leffingwell, LLC.

Regular Cadence - Smaller, More
Frequent Releases

 Faster value delivery
and faster feedback
–  60-120 days

  Less Work in Process

 Predictable delivery
–  Date, theme, planned

feature set, quality

 Scope is the variable
–  Release date and

quality are fixed

27

We have to figure out a way to deliver software so fast that our customers
won’t have time to change their minds. ─Poppendiecks - Implementing Lean

Software Development

© 2008-2010 Leffingwell, LLC.

Benefits

  Rapid customer feedback reduces waste
  Earlier value delivery against customer’s highest needs
  Frequent, forced system integration

improves quality and lowers risk
  Low cost to change

–  Accepts new, important customer features
  Reprioritize backlog at every iteration & release

–  Reduced patching headaches
  “It’s only X days the next release, that feature can wait”
  Or easy, high-confidence patching

  Smaller batches for higher productivity
–  Leaner flow through the entire organization to customer

28

© 2008-2010 Leffingwell, LLC.

Achieving Cadence: Fix Dates & Quality -
Float the Features

  Teams learn that dates MATTER
  Product owners learn that priorities MATTER
  Agile teams MEET their commitments
  Floating features provides the capacity reserve to meet deadlines

10/1/2007 11/1/2007 12/1/2006 1/1/2008 2/1/2008 3/1/2008

3/25/2008 9/24/2007

29

© 2008-2010 Leffingwell, LLC.

Managing Large-Scale Development
Requires Intense, Systemic Cooperation

  Align all teams to the enterprise mission
  Scaling agile requires managing

interdependencies amongst distributed agile
teams

  Teams themselves must understand and manage
their dependencies

  Requires coordinated planning and synchronized
development activities

  This is facilitated by an “agile release train”
delivery model

30

© 2008-2010 Leffingwell, LLC.

Principles of the Agile Release Train

  Release dates for the solution are fixed
  Intermediate, global integration milestones are established and

enforced
  Therefore, component functionality must flex

  Teams evolve to a flexible model:
–  Design spectrum for new

functionality
–  Backup plan to ship

existing assets if necessary

31

Lease
Imaginable

Minimum
Credible Moderate Best

“Time pressures will drive extreme use of simultaneous engineering”

-- The New, New Product Development Game
Harvard Business Review, 1986

© 2008-2010 Leffingwell, LLC.

Everybody Must Be on the Train

32

What do we
integrate here??

© 2008-2010 Leffingwell, LLC.

Cadence Alone is not Enough

33

Time when you discover you are not

…....time spent thinking you are on track…….

The slowest component drags the train

© 2008-2010 Leffingwell, LLC.

Synchronize to Assure Delivery

34

S H
 I P !

Regular, system wide
integration provides higher
fidelity tests and objective
assessment

Synch
events
facilitate
cross
functional
tradeoffs

Assured Potentially
Shippable Increment

© 2008-2010 Leffingwell, LLC.

Separate Development Concerns from
Release Concerns

© 2008-2010 Leffingwell, LLC.

Systems Engineering Benefits

  Continuous, Objective Status
–  Status (working code) and quality measures at iteration

and release boundaries

  Availability
–  Forces availability of Potentially Shippable Increment at

least at (internal) release cadence

  Quality
–  Continuous integration at each iteration boundary
–  Platform for concurrent system level feature/epic testing
–  Forces holistic, feature maturity at release boundaries
–  Hardening iterations provide “guard band” for full

validation and reduction of technical debt

36

© 2008-2010 Leffingwell, LLC.

Release Planning – The Pacemaker

  A full day or two for every release (every 90 days typical)
  Decentralized planning: the plan is owned by the teams
  Co-location - most everyone attends in person
  Product/Solution Managers own feature priorities
  The team builds the plan from the vision
  Development team owns

planning and high-level estimates
  Adequate logistics and

 facilitation
  Architects work as intermediaries

for technical governance,
 interfaces and dependencies

37

Global alignment. Local prioritization.

© 2008-2010 Leffingwell, LLC.

#3 – AN ARCHITECTURAL EPIC
KANBAN SYSTEM
- IMPLEMENTING REALLY BIG THINGS,
 INCREMENTALLY

© 2008-2010 Leffingwell, LLC.

Motivation

  Drive agile, incrementalism in architectural
refactoring

  Make architectural work in process (AWIP)
visible

  Establish AWIP limits to control queue sizes, limit
global WIP and help assure product
development flow

  Drive an effective collaboration with the
development teams

39

© 2008-2010 Leffingwell, LLC.

Principles of Agile System Architecture

  Principle # 1 ─ The teams that code the system
 design the system.

  Principle # 2 ─ Build the simplest architecture that can
possibly work.

  Principle # 3 ─ When in doubt, code it (or model it) out.
  Principle # 4 ─ They build it, they test it.
  Principle # 5 ─ The bigger the system, the longer the

runway.
  Principle # 6 ─ System architecture is a role

collaboration.
  Principle # 7 ─ There is no monopoly on innovation.
  Principle # 8 ─ Implement architectural flow

40

© 2008-2010 Leffingwell, LLC.

4.	
 Implementa5on	

  Ownership	
 transi-ons	

  Teams	
 begin	
 implemen-ng	
 at	

release	
 planning	
 boundaries	

  Teams	
 break	
 epics	
 into	

features	

  Architect	
 support	
 	
 on	
 “pull”	

basis	

Problem/Solu-on	
 Needs	

Iden-fica-on	

Evalua-on	

Architecture	
 Team	
 Ownership	

Implementa-on	

Development	
 Team	
 Ownership	

Agile	
 Release	
 Trains	

WIP	

Limit	

Release	

planning	

boundary	

Innova5on	
 feedback	

Ac-vi-es:	
 	
 	

  Effort	
 size	
 es-mate	

  Value	
 size	
 	
 es-mate	

  Investment	
 theme	

alignment	

Authority	

approves	
 epic	

  Meets	

threshold	

criteria	

Architect	
 Team	
 Pulls	

Epic	

  Lead	
 architect	
 	

assigned	

Product/	

Technology	
 	

Council	
 	

Approval	

1.	
 Funnel	

  Technology	
 roadmap	

  Disrup-ve	
 technology	

  Solu-on	
 problem:	
 compa-bility	

speed,	
 size,	
 security,	
 usability,	

  Common	
 infrastructure/duplicate	

investment	

2.	
 Backlog	

  Refine	

understanding	

  Est.	
 cost	
 of	
 delay	

  Refine	
 effort	
 est.	

  Rela-ve	
 ranking	

3.Analysis	

  Design	
 alterna-ves	

 Modeling	

  Development	
 	

collabora-on	

  Solu-on/product	
 management	

collabora-on	

  Business	
 case	

WIP	

Limit	

PSI	
 1	
 PSI	
 2	
 PSI	
 3	
 PSI	
 4	

WIP	

Limit	

PSI	
 1	
 PSI	
 2	
 PSI	
 3	
 PSI	
 4	

WIP	

Limit	

System
Architect Design

Spike

Tech
lead/

architect

Architectural Epic Kanban System

© 2008-2010 Leffingwell, LLC.

State Diagram

2	
 	

Backlog	

3	

Analysis	

4	

Implementa5on	

Trash	

1	

Funnel	

© 2008-2010 Leffingwell, LLC.

Queue	
 Ac5vi5es	
 to	
 transi5on	
 Transi5on	
 criteria	
 Next	
 Authority	

Funnel	
   Es-mate	
 value	

  Es-mate	
 effort	

  Test	
 against	
 investment	
 themes	

1.  Rank	
 >threshold	

2.  WHEN	
 Slot	
 available	
 	

3.  Fails	
 criteria	

→Trash	

Architectural	

Authority	

Backlog	
  Assign	
 Cost	
 of	
 Delay	

  Effort	
 es-mate	
 refined	

  Establish	
 Rela-ve	
 rank	

Ranked	
 rela-ve	
 to	
 other	
 items	

Highest	
 ranked	
 item	
 pulled	

When	
 age	
 of	
 item>	
 limit	
 →Escalate	
 or	

Trash	

Pull	
 system	

Architectural	

Authority	

	
 Analysis	
  Workshops,	
 modeling,	
 design	

alterna-ves	

 Development	
 collabora-on	
 and	

cost	
 es-mates	

 Dev	
 design	
 spikes	
 	

 Product/Solu-on	
 management	

review	

  Implementa-on	
 op-ons	
 	

 Market	
 valida-on	
 of	
 value	

 Business	
 case	

Business	
 case	
 with	
 GO/NO	
 GO	

recommenda-on	

GO	
 -­‐>	
 implementa-on	

NO	
 GO	
 1-­‐>	
 more	
 elabora-on	

needed	

No	
 GO	
 2	
 -­‐	
 reject	
 →Trash	

Product/
Technology	

council	

→Backlog	

→Analysis	

→Impl.	

→ Stay	
 in	

queue	

© 2008-2010 Leffingwell, LLC.

Splitting Epics for Implementation in the
Release Train

44

Partition by subsystem,
product or service

Major/Minor effort

System qualities Simple/Complex

Incremental functionality Variations in data

Build scaffolding first Break out a spike

H	

H	
 H	

H	

For	
 discussion,	
 see	
 www.scalingso\wareagility.wordpress.com	
 	

	

	
 Inspired	
 by	
 collabora-on	

Leffingwell,	
 LLC.	
 &	
 Symbian	
 So\ware	
 Ltd.	

©2009 Leffingwell, LLC.

